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Abstract. The spherical surface is spatially discretized with triangular lattices to numerically calculate
the Laplace-Beltrami operator contained in the self-consistent field theory (SCFT) equations using a finite
volume method. Based on this method we have developed a spherical alternating-direction implicit (ADI)
scheme for the first time to help extend real-space implementation of SCFT in 2D flat space to the surface of
the sphere. By using this method, we simulate the equilibrium microphase separation morphology of block
copolymers including AB diblocks, ABC linear triblocks and ABC star triblock copolymers occurred on the
spherical surface. In general, two classes of microphase separation morphologies such as striped patterns for
compositionally symmetric block copolymers and spotted patterns for asymmetric compositions have been
found. In contrast to microphase separation morphology in 2D flat space, the geometrical characteristics of
a sphere has a large influence on the self-assembled morphology. For striped patterns, several of spiral-form
and ring-form patterns are found by changing the ratio of the radius of a sphere to the averaging width
of the stripes. The specific pattern such as the striped and spotted pattern with intrinsic dislocations or
defects stems from formed periodic patterns due to microphase separation of block copolymers arranged
on the curved surface.

PACS. 83.80.Uv Block copolymers – 36.20.-r Macromolecules and polymer molecules – 68.08.De Structure:
measurements and simulations

1 Introduction

Recently phase separation in complex topological space
has attracted intensive research interest both experimen-
tally and theoretically due to potential applications in
many cellular processes in biology as well as in the de-
sign and function of self-assembled morphologies for nan-
otechnology. For instance, ordered phase-separated do-
mains have been observed at an unprecedented molecular
length scale in the ligand shell of nanoparticles [1]. Sin-
gle and double-helic geometries have been found during
the microphase separation of block copolymers confined in
cylindrical nano-channels [2]. Recently unique phase sep-
aration structures of block copolymers on the spherical
nanoparticles have been observed [3].
To date, much theoretical work has been carried out

to deal with the influence of the curved space and confine-
ment on the phase separation. Wu et al. [2] simulated the
microphase separation confined in cylindrical nanochan-
nels based on SCFT and obtained wonderful results in
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good agreement with experiments. The morphology of
symmetric block copolymers in a cylindrical core [4] and
asymmetric block copolymers confined in a thin film [5]
has been investigated by Fraaijk and Sevink, using the
dynamic density functional theory (DDFT). It is found
that confinement can induce various intermediate struc-
tures in thin copolymer films which are unstable in the
bulk phases [5]. These results have been confirmed by the
AFM study [6] to some extent. Another elegant method
based on Turing Model was used to simulate the period-
ical patterns on the surface of a sphere [7]. However, as
regards the phase separation on the curved surface, due
to the mathematical and numerical challenges involved,
most of theoretical investigations have been limited and
analytical results are derived only for some special classes
of surfaces with translation or rotation symmetry [8,9].

In our recently published paper [10], the microphase
separation morphology of block copolymers on the spher-
ical surface was obtained by solving Cahn-Hilliard kinetic
equation. Unfortunately, this method is phenomenologi-
cal, which does not consider the detail of the chain topol-
ogy. SCFT is known to be an appropriate and accurate
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theory to be used for self-assembled morphologies of block
copolymers. In fact, SCFT has been successful in pre-
dicting the morphologies of diblock copolymers as well
as those of linear and star triblock copolymers in the flat
space due to the advent of real-space implementation of
SCFT [11–14]. However, to our knowledge, most of the
present SCFT calculations [11–14] were performed in the
flat space because it is difficult to design an alternating-
direction implicit (ADI) [15] algorithm in curved space,
which is the key to numerically solve the diffusion equa-
tion in the SCFT calculation. In this paper, our primary
objective is to extend the ADI scheme in the flat space
to the surface of a sphere. To achieve this, the sphere is
first spatially discretized with triangular lattices so that
the Laplace-Beltrami operator contained in the diffusion
equation can be readily obtained by using a finite volume
method. Based on this discretization method, the whole
spherical surface is wrapped up with six closed paths and
the spherical ADI scheme can be obtained similar to that
in the flat space. Actually, this implementation of the ADI
method on the surface of a sphere can also be used to deal
with many other physical problems such as heat exchange,
quantum mechanics and so on.

In this article, we will firstly present the SCFT theory
of block copolymers on the surface of the sphere and focus
on the derivation of the spherical ADI scheme on the tri-
angular lattices of the sphere in Section 2. Subsequently,
self-assembled morphologies of AB diblock, ABC linear
and star triblock copolymers on the spherical surface are
investigated with real-space implementation of SCFT on
the spherical surface. A series of beautiful striped patterns
and spotted patterns of block copolymers will be shown
in Section 3. Finally, we have the conclusions in Section 4.

2 Theoretical model and formation

In this section, we present the real-space implementation
of SCFT in spherical surface for diblock copolymers and
focus on extensions of the alternating-direction implicit
(ADI) algorithm to solve the non-linear parabolic diffusion
equation in 2D flat space to the surface of a sphere.

Consider a 2D model with n AB linear diblock copoly-
mers each of polymerization N , with compositions (aver-
age volume fraction) fA and fB = 1−fA on the surface of a
sphere with radius R. The interacting chains on the sphere
are reduced to that of independent chains subject to an ex-
ternal (mean) field created by the other chains according
to the self-consistent mean-field theory. The fundamental
quantity to be calculated in SCFT is the polymer segment
probability distribution function q(r, s), representing the
probability of finding a segment s at position r. It satisfies
a modified diffusion equation.

For the diffusion equation on the curved surface, the
Laplacian in flat space ∇2 should be replaced with the
covariant Laplacian, ∆LB , also known as the Laplace-
Beltrami operator [16]. In the spherical surface, thereby,

the diffusion equation is given [17,18] by

∂q(r, s)

∂s
=

a2

6
∆LBq(r, s)− [γA(s)ωA(r)

+γB(s)ωB(r)]q(r, s) , (1)

where a is the Kuhn length of the polymer segment, ωK(r)
is the self-consistent field representing the interaction ex-
erted on the speciesK, and γK(s) is 1 if s belongs to blocks
K and 0 otherwise. The initial condition is q(r, 0) = 1.
Because the two ends of diblock chains are distinct, a sec-
ond end segment probability distribution function q+(r, s)
is needed. With these descriptions, the free-energy func-
tional of the system can readily be obtained. According
to the mean-field approximation, minimizing the free en-
ergy with respect to density and pressure leads to the
SCFT equation group, which describes the morphology of
microphase-separated block copolymers. For more details
of SCFT equations of block copolymers, we refer the read-
ers to references [17–19]. In principle, the SCFT equations
for a curved surface are exactly the same as those in flat
space except that the Laplacian on a curved surface should
be replaced with the Laplace-Beltrami operator. Matsen
and Schick first numerically solve the SCFT equations
with the spectral method [19]. However, this method re-
quires priorly assumed mesophase symmetry and thus the
discovery of complex structures is limited. The recent ad-
vent of the combinatorial screening algorithm proposed by
Drolet and Fredrickson [11,12] has been successfully used
to directly solve the SCFT equations. This procedure is
iterated until the relative free-energy change at each itera-
tion step is reduced to 10−6. Therefore, the only difference
between the real-space implementation of SCFT equations
on a spherical surface and that in the flat space is that the
ADI technique for solving the diffusion equation for q on
a spherical surface is specific and different from the usual
one in the flat space. Moreover, it is noted that to avoid
the real-space method becoming trapped in a metastable
state, random noise is added to the fields to disturb the
state formed in the iteration. However, a stable pattern
does not depend on the initial self-consistent field. Actu-
ally, it is very easy to check out whether any two patterns
on the sphere due to the translational degree of freedom
are the same morphology with naked eyes, because we can
draw the morphologies by using, for instance, 3D drawing
software where the sphere can be rotated freely.
Obviously, in the real-space algorithm the computa-

tional cost and crucial point to numerical implementation
is to solve the diffusion equation and we shall briefly re-
view how to solve the non-linear parabolic diffusion equa-
tion in 2D flat space by using the ADI algorithm. In or-
der to implement the Crank-Nicolson algorithm in 2D,
which is second-order accurate in both time and space,
and unconditionally stable, the ADI scheme [15] in 2D is
employed which is an efficient and accurate way to solve
the partial parabolic equation. In ADI, the basic idea is
to divide each time step (which here denotes the chain
contour length ∆s) into two steps of size ∆s/2; in each
substep, a different dimension is treated implicitly. For
example, in 2D flat space an ordinary implicit scheme
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for the diffusion equation, [q(r, s + ∆s) − q(r, s)]/∆s =

(a
2

6
Lx +

a2

6
Ly − ω)[q(r, s+∆s) + q(r, s)]/2 , can be split

into two alternating directions with respect to the orthog-
onal coordinates x and y:

(

1−
a2∆s

12
Lx +

∆s

4
ω

)

q

(

r, s+
∆s

2

)

=

(

1 +
a2∆s

12
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∆s

4
ω

)

q(r, s) ,

(

1−
a2∆s

12
Ly +

∆s

4
ω

)

q(r, s+∆s) =

(

1 +
a2∆s

12
Lx −

∆s

4
ω

)

q

(

r, s+
∆s

2

)

,

(2)

where q(r, s + ∆s/2) is only an intermedium quantity,
i.e., at substep s + ∆s/2 other than the distribution of
the chain with chain contour label s + ∆s/2. Lx and
Ly denote the discrete form of ∂2/∂x2 and ∂2/∂y2, re-
spectively. That is to say in 2D orthogonal coordinate,
∇

2 = Lx + Ly = ∂2/∂x2 + ∂2/∂y2. ω is the shorthand of
γA(s)ωA(r) + γB(s)ωB(r) . The advantage of ADI is that
each substep requires only the solution of a simple tridi-
agonal system. With these considerations in mind, we will
attempt to design an ADI scheme for a spherical surface
to solve the diffusion equation numerically.
First, to carry out numerical simulation, a spherical

surface is spatially discretized into 20 big spherical trian-
gles generated by the spherical project of the regular icosa-
hedron (with arc sides belonging to the sections of great
circles) [10,20]. The further discretization and higher or-
der triangles are obtained by dividing each big spherical
triangle into (L−1)2 small triangles with straight sides. In
such triangular lattice, each vertex has six neighbors, ex-
cept for those 12 singular lattice points that belong to the
original spherical icosahedron, which have five neighbors
each. Actually, any triangulation of sphere surface must
exist in excess of exactly 12 fivefold coordinated vertices
according to a classic theorem of Euler [21,22]. With this
method a discrete sphere surface with 20(L − 1)2 small
triangles and 10(L− 1)2+2 triangular lattices can be ob-
tained where L must have the form of 3k + 1, where k is
an integer. For example, the first five patterns in Figure 3
have 1620 small triangles and 812 triangular lattices where
L = 10. We have ensured that all these discretizations are
with high enough solution accuracy and the discretization
with finer triangular grids does not change the patterns.
Furthermore, to avoid potential mathematical and numer-
ical problems related to the poles in spherical coordinates,
the spherical surface is discretized into almost uniform tri-
angles by employing successive dyadic refinements of the
spherical icosahedron. We note that there is no direct cor-
relation between discretization effects and patterns formed
in our simulation.
In this paper, a finite volume algorithm is employed to

discretize the Laplace-Beltrami operator in the diffusion
equation on spherical surface with triangular lattices. Con-
sider the value of a field, say, X(r) the Laplace-Beltrami
operator ∆LBX on the triangular lattice based on aver-

Fig. 1. (a) A vertex with six neighbors and one-ring Voronoi
region enclosed by dotted lines for evaluating the Laplace-
Beltrami operator ∆LB . Note that V1, V2, · · · , and V6 are not
coplanar. (b) The schematic of spherical icosahedron with 20
big triangles used in the spherical ADI scheme.

aging Voronoi cells as shown in Figure 1a at the vertex V0

can be written as [10,23]

∆LBX =
1

2AV oronoi

6
∑

i=1

(cotαi + cotβi)(Xi −X0)

=
[

R6X6 +R3X3 − (R6 +R3)X0

]

+
[

R1X1 +R4X4 − (R1 +R4)X0

]

+
[

R2X2 +R5X5 − (R2 +R5)X0

]

, (3)

where αi and βi are two angles opposite to the edges in
two triangles sharing the edge ViV0 and Ri ≡

cotαi+cot βi

2AV oronoi

.
AV oronoi is the area of the one-ring Voronoi region, which
is enclosed by the points C1, C2 · · ·C6, as shown in Fig-
ure 1a. AV oronoi is obtained:

AV oronoi =
1

8

6
∑

i=1

(cotαi + cotβi)L
2
i , (4)

where Li is the length of the edge ViV0. That is to say
the discrete Laplace-Beltrami operator at a vertex is the
averaging over one-ring neighborhood Voronoi cells. Sim-
ilar to the discrete form of ∇2X = (∂2/∂x2 + ∂2/∂y2)X
in 2D flat space, which can be split into two different
directions’ summation (Lx + Ly)X, the spherical-surface
Laplace-Beltrami operator ∆LBX in equation (3) can also
be rewritten as equation (5) by decomposing along three
directions (conformational parameter on triangular lat-
tice), where

∆LB = Lu1 + Lu2 + Lu3 ,

Lu1X = R6X6 +R3X3 − (R6 +R3)X0 ,

Lu2X = R1X1 +R4X4 − (R1 +R4)X0 ,

Lu3X = R2X2 +R5X5 − (R2 +R5)X0. (5)

For 12 vertices of 20 big spherical triangles with only
five neighbors, the discrete form of ∆LBX in equation (3)
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Fig. 2. Schematic illustration of the ADI scheme on the spher-
ical surface. (a) The sphere is wrapped up by six paths. For
example, the lattice point V0 is covered by paths labelled with
1, 2 and 4. (b) Unwrapping of the path 1 which contains ten big
triangles. (c) The expansion of each path can be relabelled with
(i, j) which is ordinarily used to label the discrete 2D flat space.

can be separated into five directions:

∆LBX =
1

2AV oronoi

5
∑

i=1

(cotαi + cotβi)(Xi −X0)

=
1

2

[

R5X5 +R2X2 − (R5 +R2)X0

]

+
1

2

[

R1X1 +R3X3 − (R1 +R3)X0

]

+
1

2

[

R2X2 +R4X4 − (R2 +R4)X0

]

+
1

2

[

R3X3 +R5X5 − (R3 +R5)X0

]

+
1

2

[

R4X4 +R1X1 − (R4 +R1)X0

]

. (6)

Therefore, the ADI algorithm for the discretization of
the Laplacian at a vertex is along three directions Lu1,
Lu2, and Lu3, i.e., the triangular mesh itself, similar to
that (Eq. (2)) in flat space in form. However, among these
three directions only two of them are independent and the
remaining one can be linearly expressed by the first two
ones. Accordingly, only two time steps similar to the case
of ADI in 2D flat space are needed to split the original
implicit equation in our spherical ADI scheme.
As shown in Figure 2, six paths are used to cover the

surface of the sphere and each path includes ten big spher-
ical triangles. It is obvious to find that each big spherical
triangle is covered by three paths, and accordingly, the
vertex inside each big triangle is covered with three differ-

ent directions, Lu1, Lu2 and Lu3. Note that for the singu-
lar vertices with five neighbors, there are five paths going
through them while there are four paths for the lattice
points on the edges of big triangles and all these lattice
points should be treated in a straightforward way. In the
following we will show the spherical ADI scheme for the
inner lattice points of the big triangles with six neighbors
and the extension to the singular lattice point is straight-
forward. For a vertex V0 on the discrete sphere (shown
in Fig. 2b), the ADI scheme can be treated along three
directions labelled with Lu1, Lu2 and Lu3. In the Lu1 di-
rection, the diffusion equation (1) is discretized to obtain
the intermedium substep value qu1(V0, s+∆s/2):

(

1−
a2∆s

12
Lu1 +

∆s

6
ω

)

qu1

(

V0, s+
∆s

2

)

=

(

1+
a2∆s

12
Lu1+

a2∆s

6
Lu2+

a2∆s

6
Lu3−

5∆s

6
ω

)

q(V0, s).

(7)

Obviously, this equation is very similar to equation (2)
in the 2D flat space in form and can be numerically solved
because the system is tridiagonal.
The median substep values q(V0, s+∆s/2) at the lat-

tice point V0 for the other two directions Lu2 and Lu3 are
readily obtained in the same form of equation (7). Since
these three equations cover all these directions for each
lattice point, q(r, s + ∆s) on a specific lattice point can
only be obtained by averaging the intermedium quanti-
ties q(r, s + ∆s

2
) on the paths crossing this lattice point.

However, in 2D flat space, because only the direction Lx
has been used in the first time step in equation (2), it is
possible to construct the second progressive equation with
direction Ly:

q(V0, s+∆s) =

[

qu1

(

V0, s+
∆s

2

)

+qu2

(

V0, s+
∆s

2

)

+qu3

(

V0, s+
∆s

2

)]/

3. (8)

For the lattice points lying on the ridges of big triangles
which are crossed four times, there will be four equations
on four paths with the same form of equation (7). Two of
them are along the same direction but are solved on dif-
ferent paths, and the two intermedium quantities, i.e., the
solutions of these two equations will be averaged and put
into equation (8). For instance, for a lattice point crossed
by paths 1, 2, 3 and 4, paths 1 and 3 are related with the
same direction. Accordingly, q(r, s+∆s) can be obtained:

q(V0, s+∆s) =

[

q1(V0, s+
∆s
2
) + q3(V0, s+

∆s
2
)

2

+q2

(

V0, s+
∆s

2

)

+ q4

(

V0, s+
∆s

2

)]/

3, (9)

where qi(V0, s+
∆s
2
) means the solution on the i-th path

other than that on the i-th direction Lui.
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Fig. 3. Typical striped patterns with different ratios of the perimeter of the sphere to average domain size (2πR/D) for fA = 0.5.
For clarity of the arrangement of striped patterns, we only show one component. During the simulations, the discrete lattice
number is 812 and R = 10 for 2πR/D ≤ 8; the lattice number is 4412 and R = 22 for 12 ≤ 2πR/D ≤ 16; the lattice number is
10892 and R = 34 for 30 ≤ 2πR/D ≤ 37; the lattice number is 12962 and R = 37 for the last one.

3 Results and discussion

The self-assembled morphology of block copolymers is
readily obtained by numerically solving the SCFT equa-
tions as we mentioned in Section 2. The extension of SCFT
equations and real-space implementation with the ADI
scheme on a spherical surface for diblock copolymers to
triblock copolymers is straightforward.

3.1 Self-assembled morphology of AB diblock
copolymers

Generally, because the phase morphology of AB diblock
and ABC triblock copolymers in 2D and 3D flat space as
a function of parameters such as copolymer composition,
interactions between unlike blocks, etc. has been inves-
tigated in detail and the phase diagram has been con-
structed successfully [13,24], which is very similar to that
on spherical surface, the detailed phase diagram in the
parameter space on the spherical surface is not presented
in this paper, although we have indeed carried out sys-
tematic calculations on this. In contrast to microphase
separation of AB diblock copolymers in the flat space,
the morphology on the spherical surface depends not only
on the composition of copolymers and phase segregation
strength, i.e., χN , but also on the geometrical character-
istics, namely the curvature. In the following will discuss
two classes of self-assembled patterns in terms of symmet-
ric and asymmetric composition of block copolymers.

3.1.1 Striped patterns for AB diblocks

For symmetric the composition of block copolymers, i.e.,
fA = fB = 0.5, a two-component alternating flat layer
structure is formed in the flat space. On the spherical sur-
face, however, various striped patterns dependent on χ,
R and sphere radius R are observed. For the sake of sim-
plicity, χN is fixed to be 12. To investigate the relation-
ship between the sphere radius and the domain size, R, N

and χN can be put into a single expression, for example,
ratio = 2πR/D , namely the ratio of the perimeter of the
sphere to the domain size, which is the unique parame-
ter regulating the morphology of striped patterns alone.
Note that D is the average domain size of the microphase
related with χ and N and it is roughly estimated by av-
eraging the width of the phase domain.

With increasing the perimeter-domain size ratio,
various striped patterns are found as shown in Figure 3.
In contrast to the lamellar structure in the flat space,
the striped patterns are impossible to be perfect because
the sphere cannot be “combed”. As pointed out by Varea
et al. [7] there must be two classes of defects including
point defects and line defects. From Figure 3 three classes
of striped patterns form including ring-form, spiral-form
and cage-form ribbon patterns. As shown in Figures 3a,
b, c, e, f and g they can be grouped into ring-form
ribbon patterns. Among these patterns Figures 3a, c
and g are composed of ordinary ring-form ribbons with
point defects at only two opposite sites on the spherical
surface, while in Figures 3b, e and f semi-ring ribbons are
observed. Patterns in Figures 3d, h, i and j are spiral-form
ribbon patterns. In particular, for spiral-ribbon patterns
in Figures 3d and j only one spiral-form ribbon crawling
on the sphere with two ends (line defects) located at two
opposite sites is found. However, though the pattern in
Figure 3i is also a single spiral-ribbon pattern, two ends
of the ribbon are very close to each other. The double
spiral-ribbon pattern in Figure 3h with four defects
can be observed very often during our simulations. It is
interesting that similar spiral waves were also observed by
Gomatam et al. [25] in a reaction-diffusion system on a
sphere surface. Varea and his coworkers also reported the
similar spiral striped patterns on the surface of a sphere
in the study of Turing equations [7]. But they have only
obtained double spiral-ribbon patterns. Furthermore,
cage-form ribbon patterns can be seen when the sphere is
large. As shown in Figure 3k, two ribbons are delicately
weaved to be a nice cage with front ribbon sections and
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Fig. 4. Spotted pattern of AB diblock copolymers on the sur-
face of sphere with 4412 lattice points. The radius of the sphere
is 22, N = 100 and fA = 0.35. Color black denotes the B block.
The solid lines and dotted lines denote hexagonal and pentag-
onal spotted patterns, respectively.

back ribbon sections crossing roughly orthogonally. In
particular, we note that during innumerable times of sim-
ulation symmetric patterns such as the regular ring-form
ribbon structure appear only in a very narrow range of
perimeter to domain size ratios, namely a certain charac-
teristic ratio so that a number of waves exactly match the
sphere size. Finally, it should be noted that some of the
simulated patterns such as Figure 3i and Figure 3k are
not easy to be predicted without doing calculations. Since
the problem of distribution of electrons with repulsive
interactions on a sphere [26,27], the so-called Thomson
problem, is still not very clear, the distribution of stripes
formed by the microphase separation of block copolymers
on a sphere may be a more challenging problem. Due
to the complexity of these striped patterns and time-
consuming computing, the more systematic studies of the
morphologies of block copolymers on a spherical surface
will be presented in our future works.

3.1.2 Spotted patterns for AB diblocks

For the asymmetric composition of AB diblock copoly-
mers, fA = 0.35, spotted patterns are found as shown
in Figure 4. In contrast to the case in 2D flat space
where only hexagonal patterns appear, hexagonal lattice
structures along with a small number of pentagonal pat-
terns occur due to the geometrical confinement of the
spherical surface. Like the dislocations observed in the
stripe phase, these defects are intrinsic and cannot be re-
moved by annealing for longer time. Interestingly, recent
experimental [21,26] and theoretical results [7,8] demon-
strated the similar spotted patterns arrangement on the
sphere. Actually, the arrangement of spotted patterns on
the sphere is commonly observed in nature, such as atomic

and molecular arrangement in crystals [28], virus particles
self-assembled on the sphere [29], and so on. The spotted
patterns arranged on the sphere will be investigated more
carefully and detailedly with the Thomson problem [26,
27] model in our future publications.

3.2 Microphase patterns of ABC triblock copolymers

The extension of SCFT equations and real-space imple-
mentation with the ADI scheme on a spherical surface
to triblock copolymers is straightforward. Some beauti-
ful striped and spotted patterns of ABC linear and ABC
star triblocks have also been calculated by using this new
spherical ADI scheme. The radius of the sphere is chosen
to be 22 because searching self-assembled patterns on a
large-size sphere is not easy and time consuming. Three
different colors (namely blue, green and red on-line) rep-
resent A, B and C blocks, respectively, in the following
figures.
Similar to the case of AB diblock copolymers on the

sphere, ABC linear and star triblock copolymers can form
striped patterns at some ranges of copolymer composi-
tion, as shown in Figure 5 and Figure 6. Ring-form and
spiral-form patterns are found depending on the ratio of
the perimeter of the sphere to domain size. Furthermore,
like the case of triblock copolymers in the flat space the
microphase separation on the sphere also depends on the
topological structure. For example, for ABC linear tri-
block copolymers in Figure 5 there are no defects for green
on-line ribbons, which means that all the green on-line
domains, namely middle blocks, are closed ribbons due
to the geometrical character of the sphere. For ABC star
copolymers, three blocks within a chain must be jointed
at a point and due to this confinement of topology, striped
patterns of ABC star triblocks on the sphere can only be
observed when Flory-Huggins parameters between blocks
are small and one of the blocks is with low composition.
As a result, once one of the blocks is with low composition,
these striped patterns in Figure 6 are reduced to be the
same as those of AB diblock copolymers on the sphere.
Figure 7 and Figure 8 present various spotted patterns

for linear and star ABC triblock copolymers. In contrast to
the case in 2D flat space where only hexagonal patterns
appear, hexagonal lattice structures along with a small
number of pentagonal patterns are very common for tri-
blocks on the sphere as shown in Figures 7d and e and
Figures 8f and g similar to the case of spotted structure
in AB diblock copolymers. At the same time, due to the
geometric confinement of the spherical surface the domain
on the sphere is often distorted and the size of the domain
is distributed inhomogeneously, see in Figure 7f and Fig-
ures 8h and i. It is interesting that Fialkowski [30] printed
several countries’ national-flag patterns onto the micro-
sphere with diameters ranging from 160 µm to 650 µm and
it was also found that flags were distorted dramatically.
Finally, it should be noted that when the radius of the

sphere is relatively small, the curvature effect on the mor-
phology becomes strong. As shown in Figure 9, when the
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Fig. 5. Comparison of striped patterns in 2D flat space with those on the sphere formed by ABC linear triblock copolymers.
(a) Lamellar pattern in 2D flat space [13]. (b) Ring-form ribbon pattern. N = 200, χABN = χBCN = 15, χACN = 16, fA =
fC = 0.35 and fB = 0.30. (c) Single spiral-ribbon pattern N = 100, χABN = χBCN = χACN = 17 and fA = fB = fC = 1/3.
(d) Double spiral-ribbon pattern N = 100, χABN = χBCN = χACN = 18 and fA = fB = fC = 1/3. (e) Semi-ring ribbon
pattern N = 100, χABN = χBCN = χACN = 20, fA = fB = 0.30 and fC = 0.4.

Fig. 6. Comparison of striped patterns in 2D flat space with those on the sphere formed by ABC star triblock copolymers.
(a) Lamellar pattern in 2D flat space [14]. (b) Ring-form ribbon pattern N = 100, χABN = χBCN = 11, χACN = 13,
fA = fC = 0.475 and fB = 0.05. (c) Single spiral-ribbon pattern N = 100, χABN = χBCN = 11, χACN = 17, fA = fC = 0.4
and fB = 0.2. (d) Double spiral-ribbon pattern N = 100, χABN = χBCN = χACN = 18, fA = fC = 0.4 and fB = 0.2.
(e) Another form of double spiral-ribbon pattern N = 100, χABN = χBCN = χACN = 15, fA = fC = 0.45 and fB = 0.1.

Fig. 7. Comparison of regular spotted patterns in 2D flat
space with those on the sphere formed by ABC linear triblock
copolymers. Top: spotted patterns in 2D flat space [13]. Bot-
tom: spotted patterns on a spherical surface. (d) N = 100,
χABN = χBCN = 25, χACN = 17, fA = 0.60, fB = 0.20,
fC = 0.20. (e) N = 100, χABN = χBCN = 18, χACN = 22,
fA = 0.30, fB = 0.55, fC = 0.15. (f) N = 100, χABN =
χBCN = χACN = 22, fA = 0.25, fB = 0.5, fC = 0.25.

sphere radius is set to be R = 10, for instance, the water-
melon pattern for linear ABC triblocks in Figure 9a and
perfect three-color cube projection onto spherical surface
pattern for star ABC triblocks in Figure 9b are found,
which are not observed in the flat space. Figure 9c is the
expanded form of the cube projected on the sphere. From
this figure it is clearly seen that it is impossible to obtain
this pattern in the flat space.

Fig. 8. Comparison of regular spotted patterns in 2D flat
space with those on the sphere formed by ABC star triblock
copolymers. Top: spotted patterns in 2D flat space [14]. Bot-
tom: spotted patterns on a spherical surface. (f) N = 100,
χABN = χBCN = χACN = 40, fA = 0.10, fB = 0.80,
fC = 0.10. (g) N = 100, χABN = χBCN = χACN = 25,
fA = 0.10, fB = 0.70, fC = 0.20. (h) and (i) have the
same average volume fraction and polymerization: fA = 0.10,
fB = 0.70, fC = 0.20 and N = 100. (h) χABN = χBCN = 25,
χACN = 20. (i) χABN = χBCN = 28, χACN = 22.

4 Conclusion

We have proposed a spherical alternating-direction im-
plicit (ADI) scheme for the first time to help extend real-
space implementation of the self-consistent field theory
(SCFT) in 2D flat space to the surface of the sphere. To
achieve this objective, the spherical surface is spatially
discretized with triangular lattices to numerically calcu-
late the Laplace-Beltrami operator using a finite volume
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Fig. 9. Special morphologies when the sphere radius is rela-
tively small (R = 10). (a) Watermelon pattern formed by ABC
linear triblocks. N = 400, fA = fB = fC = 1/3 and χABN =
χBCN = χACN = 20. (b) Three-color cube projection onto
spherical surface pattern formed by ABC star triblocks. N =
600, fA = fB = fC = 1/3 and χABN = χBCN = χACN = 35.
(c) The expanded form of the cube projected on the sphere.

method. According to icosahedral triangular discretion,
the sphere is wra-pped up with six closed paths, each
with ten big spherical triangles, and each triangular lat-
tice is covered by three of these paths. In this spherical
ADI scheme, therefore the Laplace-Beltrami operator can
be treated implicitly along these directions, similar to the
ADI in 2D flat space.

With the spherical ADI scheme we perform SCFT cal-
culations for AB diblock copolymers with both symmetric
and asymmetric compositions. For the symmetric compo-
sition of diblock copolymers, a two-component alternating
flat layer structure forms in the flat space. In contrast to
the lamellar patterns in 2D flat space, however, the striped
patterns on the spherical surface are impossible to be per-
fect and there must be two classes of defects including
point defects and line defects depending on the perime-
ter of the sphere to the averaging domain size ratio. With
increasing ratio of the perimeter of the sphere to the av-
erage domain size, ring-form, spiral-form and cage-form
ribbon patterns are obtained. For more symmetric pat-
terns, such as the ring-formed structure with fewer dislo-
cations appear at a very narrow range near the charac-
teristic perimeter-domain size ratio. For the asymmetric
composition of AB diblock copolymers, spotted patterns
can be obtained but with dislocations compared to the
case in 2D flat space because of the coupling between the
curvature and the commensurability of copolymer period
and geometrical period of the spherical surface. For exam-
ple, a small number of hexagonal lattice structures in 2D
flat space change to be pentagon lattice phase. For self-
assembled morphologies of ABC linear and star triblock
copolymers on the spherical surface, it is found that mi-
crophase separation of triblocks also depends on the topo-
logical structure just like the case of triblock copolymers
in the flat space. However, in contrast to the case in 2D
flat space, the periodic patterns must be imperfect, espe-
cially the spotted domain on the sphere is often distorted
and the size of the domain is distributed inhomogeneously
due to the geometric confinement of the spherical surface.
Moreover, when decreasing the radius of the sphere to be
even smaller, some of the special patterns on the sphere,
e.g., watermelon pattern and perfect three-color cube pro-
jection onto sphere pattern occur, which are not found in
2D flat space. This discrimination can be interpreted as

influences of coupling between the confinement and the
big curvature of spherical surface upon the microphase
separation of block copolymers.
Furthermore it is also possible to extend this spher-

ical ADI scheme to solve SCFT equations to investigate
the microphase separation of block copolymers confined in
the spherical shell with thickness or the entire inner space
of the sphere. At last as a new numerical algorithm the
spherical ADI scheme can also be used to deal with many
other physical problems such as heat exchange, quantum
mechanics, formation of biological patterns and so on.
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